Eavesdropping Attack Detection using Machine
Learning in Network-on-Chip Architectures

Chamika Sudusinghe?, Subodha Charles?, Sapumal Ahangama?! and Prabhat Mishra*
iUniversity of Moratuwa, Colombo, Sri Lanka
*University of Florida, Gainesville, Florida, USA

Abstract—Advances in chip manufacturing technologies have
enabled computer architects to utilize System-on-Chip (SoC)
to integrate the intellectual property cores as well as other
components. Network-on-Chip (NoC) is widely used to fulfill
communication requirements in SoC architectures. Securing NoC
is vital for designing trustworthy SoCs. Eavesdropping attacks
can exploit NoC vulnerabilities to extract secret information. In
this paper, we propose a machine learning based detection of
eavesdropping attacks. Our machine learning models are trained
offline and have been used for runtime detection with a collective
decision making strategy. Experimental results demonstrate that
our approach can provide high accuracy with minimal overhead.

Index Terms—System-on-chip, network-on-chip, hardware se-
curity, eavesdropping attacks, machine learning.

I. INTRODUCTION

Recent advances in chip manufacturing technologies have
enabled computer architects to integrate an increasing number
of processor cores and other heterogeneous components on
a System-on-Chip (SoC). Modern SoC designs consist of
numerous Intellectual Property (IP) cores that communicate
using a Network-on-Chip (NoC) architecture. Compared to
other communication approaches, NoC is superior in terms
of communication performance, power consumption, signal
integrity, and system scalability because of its low-latency and
high-throughput [1]. This has encouraged the manufacturers to
frequently include NoCs in their SoC designs. Due to cost and
time-to-market considerations, manufacturers utilize the global
supply chain to get third party IP cores from different parts of
the world. The distributed nature of the NoC and its increased
usage has made the NoC a focal point for potential security
threats such as the insertion of hardware Trojans (HTs).

An implanted HT can launch a wide variety of attacks rang-
ing from denial-of-service attacks, eavesdropping attacks, data
integrity attacks, spoofing attacks, and side-channel attacks [1].
Eavesdropping attacks can lead to serious consequences in
NoC-based SoCs since it allows an attacker to extract secret
information without relying on memory access. Furthermore,
the attacker can leak these sensitive information over a long
period without being detected. Therefore, it is critical to have
adequate countermeasures to secure NoC-based SoCs from
eavesdropping attacks.

This work was partially supported by NSF grant SaTC-1936040.

Manuscript received May 20, 2022; revised July 29, 2022; accepted August
19, 2022. This article was presented at the NOCS 2022 and appears as part
of the Design & Test special issue.

A common threat model used to explore eavesdropping
attacks in NoCs is where an HT-infected router colluding with
an accompanying malicious application running on another
IP core to eavesdrop on packets transferred through the
router [1], [2]. Due to the complexity of the NoC design,
it is difficult to detect these HT-infected routers via func-
tional verification. Previous work on mitigating eavesdropping
attacks have explored different approaches such as authen-
tication and encryption [3], performing additional validation
checks [2], information obfuscation, and implementing rule-
based checkers in wireless NoCs [4]. While these approaches
are promising, they have several practical limitations. They
can introduce unacceptable design overhead. Moreover, most
of these approaches use highly predictable traffic patterns
and cannot handle application or input variations. Therefore,
these approaches are not applicable in the presence of realistic
scenarios, which consist of application characteristics changes,
task preemption, task migration, and input variations. To
address these runtime variations, we investigate the viability of
applying machine learning for eavesdropping attack detection.

Machine learning (ML) has been employed in NoC based
SoCs in the context of NoC power consumption, HT detection
within IP cores and detecting denial-of-service attacks [5], [6]
with high accuracy. To the best of our knowledge, securing
NoC-based SoCs from eavesdropping attacks using machine
learning remains an unexplored territory. In this paper, we
propose an ML-based eavesdropping attack detection that
achieves high accuracy across diverse application scenarios
without relying on subjective features such as packet source
and destination.

Major contributions of this paper are as follows;

o« We present an efficient framework to utilize machine
learning techniques combined with a collective decision
making strategy for detection of eavesdropping attacks.

o« We illustrate how NoC traffic features can be used
effectively to handle different execution scenarios.

« We conduct multiple experiments considering variation of
application execution scenarios and percentage of infor-
mation snooping to show the effectiveness our approach.

The paper is organized as follows. Section II outlines the
threat model. Section III surveys related efforts. Section IV
describes our machine leaning based eavesdropping attack
detection methodology. Section V presents the experimental
results. Finally, Section VI presents our conclusion and Sec-
tion ?? describes our limitations and future work.

II. THREAT MODEL

Eavesdropping (ED) attacker listen to confidential infor-
mation passing through the NoC when other IP cores are
communicating. These attackers passively listens to on-chip
communication (secure NoC packets) in an attempt to steal
sensitive information with intention to leak information over
extended periods without being detected. Previous work in
this domain has explored several variations of eavesdropping
attacks. We consider a well explored threat model [1], [2] in
previous research where the malicious NoC router colludes
with another malicious application running on a rogue IP core
to launch an ED attack. This can be illustrated by a simple
example using two trusted IP cores A & B, a malicious IP
core E, and a malicious router X as shown in Figure 1(a). This
attack is enabled by an HT located inside the router as shown
in Figure 1(b), which makes copies of the packets received
at the input buffer, alters header information to navigate the
packets to E (a different destination), and places the packets
back within the input buffer. In our threat model, we consider
scenarios with multiple pairs of sources and destinations
communicating simultaneously.

= B
Il " i
j— —_ — = Bi-directional link 1" auttes

|
" n IP Core o .

Route Compute

| ———— VeAlocator

switch Allocator

32
|

n Shared Resources

inpun Suich
Il 1l Il Il ____n Router 1 s —
A =l— = E
(a) ED Attack Execution (b) HT Placement in Router
Fig. 1. A Trojan infected router copying packets and sending them to a

malicious application running on another IP core to launch an ED attack.

III. RELATED WORK

Numerous research has been conducted to secure NoC-
based SoCs from ED attacks over the past few years. They
include mechanisms such as functional verification, authen-
tication and encryption [3], performing additional validation
checks [2], information obfuscation, and implementing rule-
based checkers in wireless NoCs [4]. However, these defence
mechanisms have practical limitations. Functional verification
cannot guarantee the detection of all forms of attacks during
circuit testing/validation due to multiple reasons such as lim-
ited information provided by the third party IP vendors, lack
of a golden reference model, smaller footprint, complexity of
the NoC design, etc.

Several authenticated encryption schemes using AES
Counter mode [1] were prominent in the domain in the recent
years. These approaches used tunnel based communication
mechanism in isolating sensitive information. Ancajas et al. [7]
discusses about having a simple XoR cipher combined with
a packet certification technique to calculate a tag and validate
it at the receiver. These approaches use dynamic tagging
of packets while hiding the location of tag bits. Additional
validation checks is another mechanism that can be used to
detect packet duplication in NoC routers and NIs. Raparti et
al. discussed about a snooping invalidator module to detect
data duplication and a snooping detection module to detect
malicious applications [2]. They are using this approach to

detect HTs in the NIs by discarding packets with invalid header
flits being injected into the NoC.

There are a number of efforts to utilize machine learning
concepts to detect HTs within IP cores in the SoC context.
Most of the existing machine learning approaches have been
used to detect denial-of-service (DoS) attacks. Kulkarni et al.
had made the first attempt to detect real-time hardware Trojan
using machine-learning techniques for NoC-based many-core
architectures [8]. A novel method of detecting DoS attacks in
NoCs using Spiking Neural Networks (SNN) was proposed
by Madden et al. [9]. Their detection approach explored
the traffic flow of each channel of a router (North, East,
South and West) to analyze the packet exchange between
adjacent routers. Another runtime mechanism to detect DoS
attacks was implemented by Sudusinghe et al [5]. They have
trained multiple machine learning models for different attack
and normal scenarios to detect DoS attacks. Sinha et al.
have proposed to secure accelerator rich SoCs from flooding
type of DoS attacks and to localize DoS attacks in NoC
based SoCs [10]. Their approach involves a machine learning
approach and a localization algorithm which is used to trace
back the attack path. All of these approaches have trained the
respective machine learning models offline using the collected
data samples to decrease the performance and computational
overheads. It has to be noted that most of the existing literature
has focused on mitigating DoS attacks using machine learning.
To the best of our knowledge, our proposed approach is the
first attempt in securing NoC-based SoCs from eavesdropping
attacks using machine learning.

IV. ML-BASED ATTACK DETECTION

We propose a machine learning based runtime mechanism
to detect ED attacks in the presence of varying NoC appli-
cation scenarios. Our approach consists of three important
phases as shown in Figure 2: design time, training time, and
runtime. During design time, we craft features that can be
potentially used to detect ED attacks inferring NoC traffic,
design probes attached to routers to collect data from NoC
packets with minimum performance and power overhead, and
develop eavesdropping sensing algorithm (ESA) to detect ED
attacks. Then we mimic both normal executions (NEs) and
attack executions (AEs) using the gem5 full system simulator.
The detailed description of the experimental setup is in Sec-
tion V-A. NoC traffic data is gathered from these executions
and is used to train machine learning models during training
time. The trained machine learning models are stored in a
dedicated IP core, the decision unit (DU). The concept of
DU is inline with the Security Policy Engine” (SPE) ! in a
NoC-based SoC, which depicts the possibility of executing the
computations related to a machine learning model within the
SoC infrastructure. Utilizing the ML models available at the
DU, during runtime, NoC traffic collected by the probes are
analyzed to make inferences based on the information in the
router and specified time frames.

'Security Policy Engine (SPE) is a specific IP core in the SoC which is
used to implement security constraints to be enforced by the policies.

Design Time

Craft Features

Design Router
Probes to Collect
Data

Design ESA to

Inferring

NoC Traffic Detect ED Attacks

Training Time (Offline)

Model Training
(Offline)

Emulate NoC
Traffic Data

Converge
NoC Traffic

Runtime (Online)

Send Collected
Traffic to the
Decision Unit (DU)

Collect Router
Traffic by
Time Frames

Infer Normal and

Attack Scenarios

Runtime - Decision Making Process (Online)

Calculate Attack
Probability for
Each Model Based
on Accuracy

Pooling of
Probabilities for
Specified Time
Windows

Execute Selected
Routervise Models .
in Runtime

Determine
. Whether an Attack
is Happening

Fig. 2. The three important phases of our proposed ML-based attack detection
framework: design time, training time, and runtime.

A. Design Time

Analysis of NoC traffic involves data from a large number
of features of the packets/flits. While there are a substantial
amount of data available, selecting the suitable features and
crafting new features are key considerations to develop a
robust detection mechanism. Previous studies have explored
the usage of numerous features to make inferences. In our
approach, we consider a feature vector of 10 features for
each machine learning model. The selection of 10 features
is based on the relative importance of each feature for the
decision making process. Hence, the selected 10 features of
each router differs based on the threat model, dataset and
placement of routers. We have experimentally evaluated the
performance of all available features and the selection was
made to accommodate a rational trade off between the number
of inspected features and the hardware (performance & area)
overhead. The selected feature vector differs for each router
and each execution scenario. For example, if the number of
application executions is different in two variations of the
threat model, the feature vector of a specific router would
have different sets of features reflecting the existent execution.
Some of the significant NoC features considered in the analysis
are router channel traffic from different ports (inports and
outports), virtual channel (vc) allocation, packet count, packet
transfer ratio, virtual network utilization, and buffer utilization.

The concept of “multiple physical NoCs” has been widely
adopted in the domain to facilitate communication among the
IP cores within a NoC [5]. This approach allows to have two
separate channels to handle packet traversals without causing
additional congestion for the packet transfers involved with
the application executions. Employing this approach, we use
a separate NoC for packet transfers from the router probes
to the DU. This allows us to avoid additional performance
degradation that can be caused by packet congestion, and
evade from carrying out packet header modifications to utilize
the same channel for two different packet transfer types.
Following the work done by Sudusinghe et al. [5], we use
a Data NoC and a Service NoC, where the Service NoC is

used for packet transfers from the probes to the DU. Here, the
additional power and area overhead caused by the usage of two
NoCs compared to a single NoC are 7% and 6%, respectively.
This is achieved by fitting design parameters in consistency
with Yoon et al’s analysis [11] about the usage of multiple
physical NoCs.

Data acquisition probes attached to the router are used
to collect NoC traffic data and send to the DU for further
processing. Previous research has been done to analyze the
feasibility of using such probes for various purposes. Sudus-
inghe et al. [5] have utilized probes attached to routers to
collect data and send to a “security engine” (similar to SPE)
to infer DoS attacks. After exploring the previous work and
implementations, we have used an analogous design for our
approach. We made sure that our design is consistent with
the prior work, where probes consumed 0.05mm? area in
comparison with a 0.26mm? router area when synthesized
with 0.13 micron technology [5].

Fig. 3. An example scenario for neighbouring router selection for eavesdrop-
ping sensing algorithm (ESA).

The continuous execution of the DU can result in causing
additional performance overhead. We use a modified bully
algorithm 2 combined with a trigger mechanism to select the
actively contributing machine learning models in a particular
time frame. The overall mechanism is called the eavesdropping
sensing algorithm (ESA) as shown in Figure 3. Algorithm 1
outlines the major steps in ESA. ESA triggers (routerTrigger)
when the packet transfer ratio of a particular router is greater
than 1 by analyzing the traffic data (6r) passing through
routers. Then the trigger mechanism considers that particular
router as a potentially rogue router and analyzes the packet
transfer ratios and the traffic rates of its neighbouring routers
using the modified bully algorithm. If a neighbouring router
happens to have a higher packet transfer ratio, then it will
be selected as the new potentially rogue router and the
process is repeated until the router with the highest ratio
is found (modifiedBully). Then the machine learning models
will be activated for the selected router and its neighbouring
routers (modelActivation) with the highest traffic rates using
their traffic data as the datasets (routerTraffic). As shown in
Figure 3, the rogue router 1, and its neighbouring routers 0, 2,
6 are selected for modeling while routers 4 and 5 are discarded
as no packets are traversing through them. Here, based on
the traffic data, router 1 is selected as the router with the
highest packet transfer ratio by the modified bully algorithm.

2Bully Algorithm is a methodology which can dynamically choose a leader
or a coordinator from a group of distributed processes.

If there is no router that activates this trigger mechanism, the
machine learning models of the three routers with the highest
number of traffic rates will be activated after a time threshold,
relaxationWindow (10000 cycles). This is implemented as
a failsafe mechanism to activate machine learning models
in a constant basis. Our results indicate that there is no
adverse effect due to the inclusion of this component for the
conducted experiments. The values of minNeigh, maxNeigh
and relaxationWindow are experimentally evaluated based on
the selected NoC topology (4x4 mesh) and the threat model.

Algorithm 1: Eavesdropping Sensing Algorithm

1 triggerThreshold = 1;

2 minNeigh = 3;

3 maxNeigh = 5;

4 completionTime = 0;

5 relaxationWindow = 10000;

¢ while TRUE do

7 triggerRatio, router = routerTrigger(6r);

8 if triggerRatio > triggerThreshold then

9 rogue, neighbours =
modifiedBully(router,minNeigh,maxNeigh);

10 traffic = routerTraffic(6r,rogue,neighbours);

1 modelOut =
model Activation(rogue,neighbours,traffic);

12 completionTime = getTime(modelOut);

13 else

14 if (getTime() - completionTime) >
relaxationWindow then

15 routers, traffic =

routerTraffic(fr,minNeigh);
16 modelOut =
modelActivation(routers,traffic);

17 completionTime = getTime(modelOut);

18 else

19 end

20 end

B. Training Time

Machine learning models are trained offline for a predefined
execution scenarios which accommodates potential ED attacks
that can emerge within the system. This has been an approach
that is reliably used in multiple instances, specifically to
detect DoS attacks using machine learning [8], [10], [5] as it
reduces the additional overhead of the system. Further, having
access to a larger dataset for an extended execution period
allows the machine learning models to learn from the varying
traffic patterns across multiple execution scenarios. During the
training time, the emulated NoC traffic data traversing through
the routers are collected using the probes to create feature
vectors. These feature vectors are created per each flit (atomic
pieces that form a packet) and then used for model training,
validation and parameter optimization.

C. Runtime

During runtime, probes collect NoC traffic data traversing
through the routers for specified time frames and the data is

sent for DU to make inferences. Within the DU, the router
traffic is analyzed using the ESA to detect whether there is
one or more routers with more outgoing packets compared
to incoming packets. This is measured using packet transfer
ratio. Upon the activation of the trigger mechanism, the feature
vectors within a specific time frame are aggregated to be used
as the input for the trained models. Here, the routers which
will be considered for evaluating will be selected in accordance
with the results obtained from ESA. Then a collective decision
making strategy (CDMS) is followed to involve all the selected
routers to determine whether there is an ED attack taking place
or not. The results of CDMS is the aggregated likelihood of
an attack taking place in the system. Due to the usage of
this combined approach of ESA and CDMS, the likelihood of
having false positives for normal congestions in the network is
reduced as the ESA triggers at when the packet transfer ratio
differs and for CDMS multiple routers are considered.

In the implementation of CDMS, we use an extensively
studied approach in the domain of probability theory called
Opinion Pooling to aggregate all the decisions of multiple
machine learning models of different routers. Let us consider
a trained machine learning model for router R, as M,. The
set of feature vectors F} includes the NoC traffic data for
the router R, within the time frame T'F}, to be fed to the
machine learning model M,. For a particular time frame and
a particular router, when the feature vectors are fed into the
machine learning model, it will yield the ED attack probability
EP, within that time frame with respective to the particular
router. These results will be aggregated for all the routers that
joining the decision making process and will be divided by the
total number of feature vectors traversed through the selected
routers within the specific time frame. This is analogous to
the number of flit transfers F'T}, within the same time frame.
The final decision (eaves;) of the CDMS for the given time
frame can be illustrated using the following equation.

cves — DrallEPu(Ma, F))
S SPA[V)

V. EXPERIMENTS

(1)

In this section, we present our evaluations for the proposed
approach. First, we describe our experimental setup. Next,
we describe our dataset for different scenarios and analyze
different machine learning models to select the best fit. Then,
we present the experimental results for multiple execution
scenarios and identify the best performing features. Finally,
we perform overhead analysis.

A. Experimental Setup

We use a well explored architecture model [7] in developing
the experimental setup for our evaluations. The 4 x 4 mesh
NoC was modeled using the “GARNET2.0” interconnection
network model integrated with the gem5 full system simulator.
It has provided a cycle accurate micro architectural implemen-
tation of an on-chip network router. The implementation of
the NoC model was done using X-Y routing with wormhole
switching. We tested the model using the Garnet Synthetic
Traffic Injector which is built on top of the Garnet Standalone

cache coherence protocol. Default Garner2.0 implementation
is used for packet formats. For each flit, 128 bits are allocated.
The control packet is represented by 1 flit and the data packets
are by 5 flits. In control packet, 64 bits are allocated for the
payload (address) while data packets have a payload of 512
bits. Both the gem5 simulator and the Garnet protocol have
been widely used in the domain [1], [3] and that motivated us
to use the same approach. Our experiments were conducted
using 51 traffic traces for eavesdropping attacks with varying
traffic rates.

During normal execution, two or more application execu-
tions can happen within the SoC. During an attack execution,
a malicious router in the communication path of two IPs will
be copying packets traversing the path and sending them to
a malicious attacker IP for further exploitation as shown in
Figure 4. For our experiments, modifications were done to the
source code of Garnet protocol to send copied packets from
the rogue router within the same cycle. Further, the frequency
of packet copying is maintained in such a manner that the
percentage snooping of information would range from 10% to
100%. Modeling of the attack execution has been done with
minimal power and area footprint making it difficult to detect
via traditional approaches such as functional verification. De-
pending on the complexity of the threat model, the number
of application executions and the number of malicious routers
engaging will be higher.

Node with Idle IP (IIP) B Node with Malicious Attacker IP (MIP)

Node with Normal Execution (NIP) Node with Malicious Router IP (MRIP)

(b) EC2

(c) EC3

Fig. 4. Different application execution types considered for model training.

B. Dataset

To conduct the experiments, the dataset for both training and
testing were emulated considering three different execution
scenarios (ECs) in order to inspect the feasibility of using
machine learning techniques to detect ED attacks. The training
data used for ECs can be described as follows in Table I:
two application executions and one malicious router (EC1),
three application executions and one malicious router (EC2),
and five application executions and two malicious routers
(EC3). For each of the ECs, we have considered three cases
representing the percentage snooping of information of 25%,
50%, and 100%. Then, the trained models were tested against
unseen data for both normal executions and attack executions.

C. Model Selection

We experimented using multiple machine learning models
to analyze the feasibility of using a learning based technique
to detect an ED attack. Analysis was done considering two
approaches, where as model training was done for all data

TABLE I
DATASET FOR THREE EXECUTION SCENARIOS (EC1, EC2 AND EC3).
HERE, N-5-15 MEANS NORMAL EXECUTION WITH IP 5 (SOURCE)
RUNNING THE APPLICATION THAT IS COMMUNICATING WITH IP 15
(DESTINATION). SIMILARLY, A-6-14 MEANS ATTACK SCENARIO
INVOLVING MALICIOUS ROUTER IN IP 6 COPYING THE PACKET AND
SENDING TO THE COLLUDING APPLICATION RUNNING IN IP 14.

Execution Train Test
Type (EC) | Normal | Attack
ECl1 N-0-15 A-2-14 | A-1-14
EC2 N-0-15 A-6-14 | A-7-14
N-4-15
EC3 N-0-15 A-2-14 | A-1-14
N-3-15 A-6-14 | A-7-14
N-4-15 N-2-15
N-5-15 N-6-15

points at once and training the models based on the data
passing through the routers. The results from the trained
models for all data points did not yield promising results and
the rest of the analysis is based on modeling using router-
specific data. Figure 5(b) illustrates the results of machine
learning models: Linear Regression (LR), MLP Neural Net-
works (MLP), Decision Tree Classifier (DT), Random Forest
Classifier (RF) and XGBOOST Classifier (XGB), used for
the analysis considering the execution scenario EC2. Based
on our analysis, XGBOOST, which is a distributed gradient
boosted decision tree algorithm, has performed well. Similar
trends have been observed in previous research for DoS
attack detection in NoCs [5] and malicious traffic detection
methodologies in the computer security domain. For the rest
of the exploration we use XGBOOST for training machine
learning models for router-specific data, separately for each
router. Each model is trained with different parameters based
on the training data and the selected features.

D. Experimental Results

The performance of the model in the presence of an attack
was evaluated based on accuracy, F1 score, precision and recall
for all three execution scenarios. We performed a comparison
of the training and validation accuracy of datasets based
on the percentage snooping of information due to an ED
attack as shown in Figure 5(a) for the application execution
scenario in EC1. The results manifested the fact that it would
be harder to detect smaller attacks, when only 10% of the
information is being eavesdropped. But, with the increase of
the percentage eavesdropping of information, the detection
accuracy significantly increases reaching as high as 87.42%.
For the rest of the analysis, a comparison was done among
the three application execution types mentioned in Table I
considering 25%, 50%, and 100% as the percentage snooping
of information.

Figure 5(c) illustrates the performance of the machine
learning models both in the presence of seen and unseen
application executions. The average accuracy increases when
the number of application executions are higher. This trend is
evident in the results obtained for EC1, EC2 and EC3. In com-
parison with EC1 & EC2, EC3 has a rich dataset with higher
number of varying application executions. This has enabled the
machine learning models to learn from diverse traffic patterns.

ED Attack Detection Accuracy based on Percentage Snooping of Information

10% 25% 50% 70% 100%

—Train Validation

(a) XGB model performance with varying snooping percentage for EC1

% Accuracy of Machine Learning Approaches (50%)

EC2 Dataset LR MLP DT RF XGB
Train 56.38 68.01 74.11 78.35 89.28
Val 53.51 66.67 69.43 72.64 81.92

(b) Comparison of machine learning approaches for the dataset EC2

ED%
25% 50% 100%

Dataset Type| Train Val Test Train Val Test Train Val Test
EC1 84.14 70.42 71.78 86.73 78.91 77.24 91.93 87.42 75.65
EC2 85.77 78.83 74.26 89.28 81.92 80.45 94.48 91.37 91.84
EC3 99.91 99.65 97.37 99.95 99.87 98.39 100 100 99.52

(c) Experimental results for EC1, EC2, & EC3 with varying snooping percentages
Fig. 5. Experimental results for EC1, EC2, & EC3

Further, when the snooping percentage increases, the accuracy
increases comparably for all executions, justifying the fact that
larger attacks can be detected easily. The results have a similar
trend for all training, validation and testing accuracy. Hence,
we can safely assume that the trained machine learning models
are performing well and not overfitting.

Dataset Type | Test Data CDMS Test Results (50%) Accuracy | F1-Score| Precision| Recall

EC1 A-7-14 | 84.31 | 79.58 | 73.14 | 71.93 - 77.24 0.7793 | 0.7884 | 0.7704
EC2 A-7-14 | 80.64 | 83.93 | 77.85 | 79.39 - 80.45 0.8054 [0.8152 | 0.7958
A-7-14 | 99.41 | 98.13 | 99.22 | 99.45 | 98.44 98.93 0.9882 [0.9919 | 0.9846

A-7-14 | 99.27 | 97.63 | 98.55 | 99.38 | 98.42 98.65
N-2-15 | 96.87 | 98.11 | 97.43 - - 97.47
N-6-15 | 98.51 | 98.29 | 98.67 - - 98.49

0.9850
0.9760
0.9823

0.9906
0.9755
0.9805

0.9794
0.9764
0.9842

EC3

(a) Experimental results for EC1, EC2 and EC3 including the collective decision making strategy (CDMS)

Top 5 Performing Features
EC1 EC2 EC3
packet count

packet count packet count

ve allocation ve allocation
flit_id

bufter utilization

vc allocation
flit_id

outport_2

router channel traffic

virtual network

buffer utilization import outport_1

(b) Top five performing features of router 2 in the presence of different execution types at 50%
as the percentage snooping of information

Fig. 6. Experimental results with collective decision making strategy (CDMS)
and top performing features.

Further exploration on the results were done considering the
collective decision making strategy (CDMS) of the routers.
The results are shown in Figure 6(a). In CDMS, based on the
traffic rates and other criteria considered in ESA, the number
of routers considered for the final detection accuracy and other
metrics differs. For example, while only four routers were con-
sidered in EC1 & EC2, three routers have involved in the first
two scenarios in EC3. Since the last two scenarios are NEs, in
accordance with the ESA, only three routers were taken into
consideration. This number was decided after experimentally
evaluating using multiple application executions and traffic
patterns. Apart from the accuracy values, considering the other
evaluation metrics, both precision and recall values are ranging
between ~0.77% and ~0.99%. While, either of them increases
at the cost of the other, the resultant values depict the fact
that the machine learning models are performing up to the

expectations. This is even justified by results for the F1 score,
which is the harmonic mean between precision and recall.

E. Best Performing Features

As discussed in Section IV-A, there is a significant impact
for the results from the features utilized by each machine
learning model. Unlike the previous attempts at using machine
learning for attack detection in NoC based SoCs, in our
approach the feature vector used for the model differs based
on the application executions and the placement of the routers.
For a selected application execution, the routers involve in
the CDMS have distinct feature vector for each. A total of
24 feature vectors have been analysed in our experiments as
depicted in Figure 6(a). Figure 6(b) illustrates the top five
performing features of router 2 for the three different execution
types. It can be perceived that both EC1 and EC2 has a similar
trend while EC3 deviates from the prior scenarios. It is mainly
due to the relative similarities of the application executions
happening in EC1 and EC2, whereas EC3 is different. Similar
trend has been observed in other routers with respective to the
top 5 features in our analysis.

F. Overhead Analysis

Unlike previous work, the implementation of ESA has
allowed us to significantly reduce the number of machine
learning models contributing in the CDMS while increasing
the overall accuracy. Since these models were trained offline
in the training time, only the weights of the trained models are
used for making predictions reducing computational overhead.
The designs of the probes in the routers and multiple physical
NoCs are consistent with the prior work in the domain [5],
[11]. The power and area overhead incurred by the usage of
multiple physical NoCs (Data NoC and a Service NoC) are
7% and 6%, respectively, while the router probes consumed
0.05mm? area in comparison with a 0.26mm? router area.
These values fall within the same range of the exiting work
in the domain [12], [10], [2].

VI. CONCLUSION

Eavesdropping attacks have become a major concern in
NoC-based SoCs since it allows an attacker to extract secret
information. In this paper, we have introduced a machine
learning based mechanism to detect eavesdropping attacks
in NoC-based SoCs. We have used an extensively explored
threat model, where a malicious NoC router colludes with
a malicious application running on an IP core to launch an
eavesdropping attack. We have developed an efficient frame-
work with machine learning and collective decision making
strategy. Experimental results demonstrated the effectiveness
of our approach in detecting eavesdropping attacks with high
accuracy within a smaller time frame for varying application
execution scenarios. Our approach can be integrated with
other defense mechanisms to effectively detect eavesdropping
attacks with high accuracy.

[1]
[2]
[3]
[4]

[5]

REFERENCES

S. Charles and P. Mishra, “A survey of network-on-chip security attacks
and countermeasures,” ACM Computing Surveys, vol. 54, no. 5, 2021.
V. Raparti et al., “Lightweight mitigation of hardware trojan attacks in
noc based manycore computing,” in DAC, 2019, p. 48.

S. Charles et al., “Lightweight and trust-aware routing in noc-based
socs,” in ISVLSI, 2020, pp. 33-42.

A. Vashist et al., “Securing a wireless network-on-chip against jamming-
based denial-of-service and eavesdropping attacks,” TVLSI, pp. 2781—
2791, 2019.

C. Sudusinghe et al., “Denial-of-service attack detection using machine
learning in network-on-chip architectures,” in International Symposium
on Networks-on-Chip (NOCS), 2021, pp. 35-40.

[6]
[7]
[8]
[9]
[10]
(1]
[12]

——, Network-on-Chip Attack Detection using Machine Learning.
Springer, 2021, p. 253-275.

D. Ancajas et al., “Fort-nocs: Mitigating the threat of a compromised
noc,” in DAC, 2014, pp. 1-6.

A. Kulkarni et al., “Svm-based real-time hardware trojan detection for
many-core platform,” in ISQED, 2014.

K. Madden et al., “Adding security to networks-on-chip using neural
networks,” in SSCI, 2018.

M. Sinha et al., “Sniffer: A machine learning approach for dos attack
localization in noc-based socs,” JETCAS, pp. 278 — 291, 2021.

Y. J. Yoon et al., “Virtual channels and multiple physical networks: Two
alternatives to improve noc performance,” TCAD, vol. 32 (12), 2013.
S. Charles et al., “Real-time Detection and Localization of Distributed
DoS Attacks in NoC based SoCs,” IEEE TCAD, 2020.

